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ABSTRACT 
 

The properties of ion thermal rogue waves in unmagnified warm pair-ion plasma in the vicinity of the critical 

density of the negative ions are investigated. Using the reductive perturbation theory, an extended modified 

Korteweg-de Vries equation (EMKdV) is obtained. At small wave number and using the derivative expansion 

method the EMKdV equation is reduced to the corresponding nonlinear Schrödinger equation (NLSE). In the 

regions of the modulation instability, rogue waves are formed. It is found that the different system parameters have 

remarkable effects on both the possibility of forming the rogue waves as well as their amplitudes. 

Keywords: Pair-Ion plasma, Rouge wave, Ion thermal plasma, Extended Modified Kortewegde Vries equation 

(EMKdV) and Nonlinear Schrodinger equation (NLSE) 

 

I. INTRODUCTION 

 

The ordinary plasma systems consist of ions and 

electrons, and many of the linear and nonlinear 

characteristics of the system depend on the big mass 

difference between ions and electrons. So scientists 

became possessed by trying both experimentally and 

theoretically changing this basic structure by adding new 

components or try to replace electrons by another 

negative ion species in order to change the basic system 

characteristics or to achieve certain goals. For example 

Schermann and Major [1] in 1978 succeeded in 

generating plasma system with negative ions instead of 

electrons and another species of positive ion during their 

project on single particle spectroscopy. In 2003 Oohara 

and Hatakeyama[2] developed a novel method for 

generating pure pair-ion plasma using the fullerene as an 

ion source, and consequently they  achieved a great step 

in studying pair plasmas properties. Pair plasmas have 

their own thermodynamical properties, in pure pair-ion 

plasma. It is found that both kinds of the ions species 

have a single time scale to relax to thermodynamical 

equilibrium owing to their equal masses [3]. A pair-ion 

plasma is similar to an electron-positron plasma; 

however, the problem of annihilation is absent in a pair-

ion plasma. The short life time of electron-positron 

plasma and low density production of positrons in 

laboratory experiments make it difficult to analyze 

various collective modes. One of the major obstacles in 

generating a stable electron-positron plasma is the weak 

source of positrons (10
6 

positrons/s) obtained using the 

radioactive sources[4] and (10
8
  -10

9
 positrons/s) with 

accelerator based source[5]. Therefore the attention is 

focused on the stable generation of pair-ion plasmas in 

laboratory such as fullerene C
±
60 and hydrogen H

±
   

plasmas. Experimental observations[6] of a pair-ion 

fullerene C
±

60   plasma have invoked a great deal of 

interest in these topics. It has been reported that pure PI 

fullerene plasmas can support three kinds of electrostatic 

waves propagating parallel to an external static magnetic 

field. These waves are the ion plasma waves (IPW), the 

ion acoustic wave (IAW), and the third one has been 

named as the intermediate frequency wave (IFW). 

However, there are two observations on the above 

experiment[6]. First the IAW has frequency larger than 

the theoretically calculated one. The second is that the 

IFW has a mysterious feature that the group velocity is 

negative but the phase velocity is positive i.e. the mode 

looks like a backward wave. However, the IPW shows 

no special features in pair-ion plasma. Some theoretical 

investigations have shown that the acoustic speed 

becomes larger in a pair-ion plasma if it is not pure and 

contains a significant concentration of electrons[7]. 

Saleem[8] put a criterion to define a pure pair-ion 
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plasma and suggested that the lighter elements (like H 

and He) are more suitable to produce pair-ion plasmas. 

 

The nonlinear waves in plasma can be described either 

by the Korteweg--de Vries equation KdV family 

equations or the nonlinear Schrödinger equation (NLSE). 

The KdV equation describes the evolution of non-

modulated wave, i.e. a bare pulse with no fast 

oscillations inside the packet, which is usually called the 

KdV soliton. The NLSE governs the dynamics of a 

modulated wave packet. In the NLSE, the nonlinearities 

are in balance with the wave group dispersion and the 

resulting stationary solutions of the NLSE have an 

envelope structure, called envelope soliton[9]. The 

NLSE, where the modulational instability (MI) 

phenomenon could be studied, is considered as one of 

the most important equations which governs the 

movement of the nonlinear structures in many branches 

of physics; condensed matter, nonlinear optics, plasma, 

and even biophysics[10]. When the wave packet is 

modulationaly unstable, it may dissociate into smaller 

wave packets or to single waves. One of the most 

interesting type of waves which could be formed in the 

case of the modulation instability is the rogue waves. 

 

Rogue waves are nonlinear waves which are short-lived 

phenomena appearing suddenly out of nowhere, so they 

can be quite unexpected and mysterious[11]. The 

average height of the rogue waves can be two or even 

more times the height of the surrounding waves. 

Importantly, rogue waves have been observed in many 

fields; mid-ocean and coastal waters[12], optical 

systems[13], fiber optics[14], parametrically driven 

capillaey waves [15], Bose-Einstein condensates [16,17], 

super fluids[18], optical cavities[19], atmospheric 

physics and plasma physics[20]. 

 

To the authors knowledge the ion thermal rogue waves 

in a pair-ion plasma system without electrons has not 

been studied yet. So we tried here to cover this 

important subject and studying how may the formed 

wave may be affected by the presence of stationary dust 

particles. It is well known that in the presence of two 

opposite polarity species as fluids, there were some 

critical density at which the nonlinear coefficient of the 

KdV equation vanishes and this leads to terminate the 

nonlinear term of the KdV equation and the KdV 

equation becomes inadequate to describe the system. 

Moreover to study the evolution equation of the system 

in the vicinity of such critical density, new stretched 

independent variables are required. Introducing these 

new variables into the system of equations will lead to 

Extended Modified Korteweg-de Vries equation 

(EMKdV). Using the derivative expansion technique 

method, this new equation could be transformed into the 

corresponding NLSE which is valid at a small wave 

number, from which we can study the modulation 

instability (MI) and so the possibility of forming the 

rogue waves[21], which is the motive of this study. This 

paper is organized as follows: in Sec.2 the model 

equations are introduced and the derivation of the 

evolution equations EMKdV and converting it to the 

corresponding NLSE. In Sec.3 the numerical results are 

discussed and finally Sec.4 is devoted for the conclusion. 

 

II. MODEL EQUATIONS AND DERIVATION OF 

NLS EQUATION  
 

We consider a warm unmagnatized plasma system 

consisting of positive and negative ions as fluids. The 

system of normalized equations describing such system 

is given by 
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and the Poisson equation 

pn nn
x





2

2
 (5) 

 

In Eqs.(1)-(5), the subscripts p and n stand for positive 

ions and negative ions, respectively. All number 

densities are normalized with respect to the unperturbed 

number density of the positive ions 
)0(

pn . The velocities 

up  and un  are normalized with respect to positive ion-

thermal speed 
2/1)/( pppi mTC  . The potential  is 

normalized by the thermal potential eTp /  . The space 

and time are normalized by positive ion debye length 
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2/1)0(2 )4/( peDp neT    and the inverse of the positive 

ion plasma period 
2/1)0(21 )4/( pppp nem  

, 

respectively. Here, e  is the electron charge, pT  the 

positive ions temperature in energy unit, pn TT /  is 

the negative to positive ions temperature ratio. The 

quasineutrality condition for this system is 
)0()0(

pn nn   . 

)0(

nn  and 
)0(

pn  are the unperturbed densities of negative 

ions and unperturbed positive ions density respectively. 

 

To find the evolution equation of this system we follow 

the standard method of reductive perturbation 

technique[22] by introducing the following stretched 

coordinates 

 

, and )( 2/32/1 ttxX    (6) 

 where   is the phase velocity and   is a small 

parameter. Furthermore, we expand all the physical 

quantities in Eqs.(1)-(5) as follows 

,1 )3(3)2(2)1(
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 and  

.)3(3)2(2)1(    (11) 

 

Substituting the Eq.(6) and the Eqs.(7)-(11) into the set 

of the basic equations and separating the different orders 

of   , we get from the first order 
2/1

1
)(






n

n

N

N 
  . 

Proceeding to the next orders it is easy to obtain the 

KdV equation as  
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There is a critical density value of the negative ions at 

which the nonlinear coefficient of this equation vanishes. 

In this case the stretched variables (6) are not valid to 

use any more, so we assume the new stretched 

variables[23,24] and 

 

, and )( 3ttxX    (15) 

 Using this expansion with the previously assumed 

expansion in Eqs.(7)-(11) and following the method in 

Refs.23 and 24 into the set of the basic equations and 

separating the different orders of   , we can easily 

obtain the modified KdV equation. 
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In the vicinity of the critical density of negative ions, 

neither the KdV equation (12) nor the modified KdV 

equation (16) is adequate for describing the evolution of 

the system. So we have to look for a new evolution 

equation. Following the work done by Watanabe[25] 

and El-labany and El-Sheikh[23] we obtain 
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which describes the evolution equation in the vicinity of 

the critical density of the negative ions. The nonlinear 

term is a combination of the nonlinear term of the KdV 

equation (12) and the nonlinear term of the modified 

KdV equation (16). 

 

Now in order to study the possibility of generation of 

rogue waves in this system, we should determine the 

regions of modulational instability in which the rogue 

waves could be formed. This could be achievable by 

converting Eq. (18) into the corresponding NLSE 

equation which is valid only for small wave numbers. To 

do so we apply the derivative expansion technique[26]. 

We assume a solution of Eq. (18) in the form of a 

weakly modulated sinusoidal wave by expanding   as: 
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where k  is the carrier wavenumber and   is the 

frequency for the given wave. The stretched variables  

and   are 

 

 2 and )(  gvX  (20) 

 

whith gv  is the group velocity, which will be 

determined later. 

 

Assume that all perturbed quantities depend on the fast 

scales via the phase )( kX  only, while the slow 

scales ),(   enter the arguments of the l th harmonic 

amplitude 
)(m

l . Since ),(  X  must be real, 
)(m

l  must 

satisfy the reality condition 


  )()( m

l

m

l  , where the 

asterisk indicates the complex conjugate.The derivative 

operators appearing in the system of the basic equations 

become 
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Using Eqs. (19)-(21) into (18), we obtain 
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The first-order approximation (m=1) with (l=1) yields 

the linear dispersion relation 

 
3Bk  (23) 

 

For the first-order harmonic (l=1) of the second-order 

approximation (m=2),we find that 

 
23Bkvg   (24) 

 

which corresponds to the group velocity, k /  . 

For the second harmonic ( 2l ) with m2  we have 

,)6/(
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whereas the zero harmonic ( 0l ) for this order, gives 
2

)1(

1

)2(

0 )/(  gvA  (26) 

 

Proceeding to the third-order approximation ( 3m ) 

and solving for the first harmonic equations ( 1l ),an 

explicit compatibility condition will be found, from 

which we can be easily show to be the NLSE 
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where the dispersion coefficient P  is given by 
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and the nonlinear coefficient Q  is given by 
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There are many solutions to the Eq(27). One of these 

solutions is the rational solution which is an appropriate 

form for describing the rogue wave solution for PQ  > 

zero [27] which is a localized solution in both space and 

time and is given by 
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And is as shown in Fig. 1. This Fig. describes the 

variation of rogue waves in three dimensions for the 

case of positively charged dust grains. 

 
Figure 1: The Amplitude of the rogue waves Φ with ξ and η 

at  =0.8 and k =0.05. 
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III. RESULTS AND DISCUSSION  

 

The NLSE (27) supports many kinds of solutions and 

governs the modulation instability process in the system 

which happens due to the interchange of energy between 

the formed wave packet and the surrounding medium. If 

this balance is sustained then we will have a case of 

modulation stability (the value of the product of PQ  is 

less than zero) and in this case the system may form 

what is called a dark soliton. Otherwise, the wave packet 

dissociates and may form grey solitons, bright solitons 

and many other types. One of them is the rogue waves. 

So before studying the behavior of these waves and how 

they are varying with different system parameters we 

have first to determine the modulation instability regions 

and determine how they vary with the system parameters. 

Fig. 2 represents the variation of the product PQ  with 

the wave number k  at different values of temperature 

ratio .   It is noticed that decreasing the values of    

enhances the modulation stability of the system and so 

decreases of the probability of forming rogue waves. 

 

 

 
Figure 2:  The variation of PQ with k at different values of σ 

where  

σ =0.65, σ =0.75, σ =0.83.py 
 

 

Fig. 3 shows the variation of the maximum amplitude of 

the rogue waves with  . It is obvious that the 

maximum amplitude decreases with the increase of the 

temperature ratio. 

 
Figure 3:  The variation of Φ with σ at k=0.132. 

 

 

IV. CONCLUSION 

 
The possibility of forming the ion thermal rogue wave is 

investigated through studying the modulation instability 

of the system at small wave numbers. It is found that the 

system pararmeters affect both the probability of 

forming the rogue waves as well as their amplitudes. 
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